Isocyanid- und Heteroallen-verbrückte Metallkomplexe, IX<sup>[1,2]</sup>

## Di- und Trieisenkomplexe mit funktionellen Isocyanidbrücken

#### Götz Christian, Dieter Lentz, Hans Hartl und Wolf Peter Fehlhammer

Institut für Anorganische und Analytische Chemie der Freien Universität Berlin, Fabeckstraße 34-36, W-1000 Berlin 33

Eingegangen am 10. Dezember 1991

Key Words: Isocyanide dichlorides, functional / (Lewis)Basic metals / (Three component)Oxidative additions / Iron complexes, di- and trinuclear / Isocyanide bridges, functional

### Isocyanide- and Heteroallene-Bridged Metal Complexes, IX<sup>[1,2]</sup>. – Di- and Triiron Complexes with Functional Bridging Isocyanides

The reactions of ten mainly functional isocyanide dichlorides  $RN = CCl_2$  with  $Na[FeCp(CO)_2]$  in tetrahydrofuran give monoisocyanide derivatives  $[Fe_2(Cp)_2(CO)_3CNR]$  (1a-g) of  $[Fe-Cp(CO)_2]_2$  in which the isocyanide occupies a bridging position. In three cases also minor amounts of diisocyanide complexes  $[FeCp(\mu-CNR)CO]_2$  (2c, 2e, 8) have been isolated. The

Die Enthalogenierung von geminalen Dichloriden mit Metallverbindungen, in denen das Metall in einer niedrigen Oxidationsstufe vorliegt, wurde in den letzten Jahren mehrfach zur Synthese von ungewöhnlicheren Metall-C-gebundenen Liganden am Komplex angewandt. Beispielhaft seien die zu Pentacarbonyl(thiocarbonyl)-<sup>[3]</sup>, -(2,3-diphenylcyclopropenyliden)-<sup>[4]</sup> und -(aminochlorcarben)chrom<sup>[5]</sup> führenden Reaktionen von Na2Cr(CO)5 mit Thiophosgen, 1,1-Dichlor-2,3-diphenylcyclopropen bzw. Phosgeniminiumchlorid genannt, deren letztere sich zudem zu einer Carbinsynthese ausbauen lie $\beta^{[6-8]}$ . Furore machte kürzlich der Ersatz aller vier Halogenatome in CI4 durch zwei Porphyrineisen-Komplexfragmente<sup>[9]</sup>; jetzt zeigte Beck, daß sich durch Umsetzung der Zwischenstufe (Dihalogencarben)(porphyrin)eisen mit einem zweiten "basischen Metall" auch heterodinukleare Komplexe mit dem "nackten" C-Atom als Brücke gewinnen lassen<sup>[10]</sup>.

Auf analoge Weise werden Isocyaniddichloride in Isocyanidkomplexe übergeführt, wobei neben dem CNR-Molekül prinzipiell auch die gleichzeitig entstehenden Chlorid-Ionen als Liganden in den Komplex eintreten können (Gl. 1). Für

Schema 1. Reaktionsverlauf und Produkte der Dreikomponentenoxidativen Addition von Isocyaniddichloriden an [Fe<sup>0</sup>Cp(CO)<sub>2</sub>]<sup>-</sup> (= Fp<sup>-</sup>)



chlorocarbonyl-substituted aryl isocyanide dichlorides and pentafluorophenyl isocyanide dichloride in addition suffer (CO)Cl/and F/metal exchange, respectively, with formation of  $\mu_3$ -isocyanide-bridged triiron complexes (4a - c, 7) via the intermediates 5 and 6. 7 has been studied by X-ray analysis.

diese Variante hat sich die Bezeichnung "Dreikomponentenoxidative Addition" eingebürgert<sup>[11]</sup>.

Als Ausgangsmaterialien für die Herstellung von Pflanzenschutzmitteln sind Isocyaniddichloride heute in breiter Palette verfügbar und gut untersucht<sup>[12]</sup>. Viele enthalten interessante funktionelle Gruppen und empfehlen sich damit als Quelle für bisher unbekannte funktionelle Isocyanide, denen nach wie vor unser Hauptaugenmerk gilt. Mit den für oxidative Additionen (auch vom Dreikomponenten-Typ) prädestinierten Metallverbindungen RhCl(PPh<sub>3</sub>)<sub>3</sub>, [Rh-(Cl)(CO)<sub>2</sub>]<sub>2</sub>, Ir(Cl)CO(PPh<sub>3</sub>)<sub>2</sub> und M(PPh<sub>3</sub>)<sub>3</sub> (M = Pd, Pt) hatten wir bereits früher solche Reaktionen durchgeführt. Die besten Ergebnisse erzielten wir jedoch mit den dianionischen Carbonylmetallaten [Cr(CO)<sub>5</sub>]<sup>2-</sup> und [Fe(CO)<sub>4</sub>]<sup>2-</sup>, die selektiv enthalogenieren, ohne andere Funktionen (CNCOR, CNSO<sub>2</sub>R) in Mitleidenschaft zu ziehen<sup>[13]</sup>.

Dieses offenbar weithin gültige Reaktionsprinzip versuchten wir nun auf das "supernucleophile" *Mono*-Anion  $[FeCp(CO)_2]^-(Cp = \eta-C_5H_5)$  zu übertragen, wobei unsere Zielvorstellung funktionalisierte Isocyanidderivate des zweikernigen Carbonylkomplexes  $[FeCp(CO)_2]_2$  waren. Wie in der voranstehenden Arbeit geschildert, können wir derartige Spezies auch ausgehend vom Cyanokomplex  $[Fe_2(CN)-Cp_2(CO)_3]^-$  synthetisieren<sup>[2,14]</sup>, ein Weg, der freilich für die im folgenden beschriebenen Aryl- oder Perhalogenalkyl-isocyanid-Dieisenkomplexe nicht gangbar ist.

#### **Ergebnisse und Diskussion**

#### 1. Mono- und Diisocyanid-verbrückte zweikernige Eisenkomplexe

Mit Blick auf die gewünschten Isocyaniddieisen-Verbindungen der Form [Fe<sub>2</sub>Cp<sub>2</sub>(CO)<sub>3</sub>CNR], in denen Carbonylund Isocyanidliganden "wahlweise" terminale und/oder

Brückenpositionen einnehmen können, setzten wir das Isocyaniddichlorid mit der doppelten molaren Menge Dicarbonyl(cyclopentadienyl)ferrat um. In summa rechneten wir mit einem Reaktionablauf, wie er in Schema 1 skizziert und durch eine Reihe von Beobachtungen gestützt ist. Hierin stellen B und C die erwarteten, vermutlich über die nicht verifizierte Zwischenstufe A<sup>[15]</sup> gebildeten Produkte einer primären 1:1-oxidativen Addition dar, für die es in den [Cr(CO)<sub>5</sub>]<sup>2-</sup>- und [Fe(CO)<sub>4</sub>]<sup>2-</sup>- bzw. Phosphanrhodiumbis -platin-Produkten mit Isocyaniddichloriden klare Parallelen gibt [s.o., Gl. (1) und Lit.<sup>[13]</sup>]. Die sich anschließende Redoxsymproportionierung zwischen den Fe<sup>II</sup>-Spezies und dem zweiten Äquivalent  $[FeCp(CO)_2]^-$  ist – jedenfalls für  $\mathbf{B}$  – explizit bewiesen und bereits erfolgreich zum systematischen Aufbau verschiedener Isocyaniddieisen-Komplexe bis hin zum persubstituierten Fe<sub>2</sub>Cp<sub>2</sub>(CNPh)<sub>4</sub> angewandt worden<sup>[16,17]</sup>.

$$[F_{e}^{O}CO)_{2}]^{-} + CI_{2}C=NR \xrightarrow{-CI^{-}} \langle CpF_{e}^{\parallel}(CO)_{2}-C=NR \rangle$$



Wahrscheinlich spielen jedoch im Rahmen des Gesamtprozesses auch radikalische Spezies (z. B.  $[FeCp(CO)_2]^{\circ})$ eine Rolle; dies könnte jedenfalls die ausschließliche Bildung von  $[FeCp(CO)_2]_2$  in Experimenten mit Alkylisocyaniddichloriden erklären (vgl. dazu weiter unten und unter 2.).

Erste orientierende Versuche zur Realisierung des Syntheseziels wurden mit dem nichtfunktionellen Phenylisocyaniddichlorid unternommen; wie in allen späteren Ansätzen war Tetrahydrofuran Reaktionsmedium, die Reaktionstemperatur betrug -78 °C.

Die IR-spektroskopische Kontrolle des Reaktionsfortgangs ergab, daß die Produktbildung selbst bei den gewählten milden Bedingungen sofort nach dem Zusammengeben der Reaktanden praktisch abgeschlossen war. Man erkennt dies am Auftauchen der v(CN)-Bande des Brückenisocyanid-Liganden (**1a**: 1693 cm<sup>-1</sup>), die auch bei längeren Reaktionszeiten nicht intensiver wird. Die chromatographische Auftrennung des Substanzgemisches ergab zwei Fraktionen, von denen die erste, mengenmäßig größere die Carbonyl-Stammverbindung [FeCp(CO)<sub>2</sub>]<sub>2</sub> enthielt, während aus der zweiten tiefviolettes **1a** mit 25% Ausbeute resultierte.

Analog wurden auch die Verbindungen 1b-f mit funktionalisierter Isocyanid-Seitenkette erhalten. Die Reaktionen der Isocyaniddihalogenide  $Cl_2CNCO_2C_6H_{11}$  und

Br<sub>2</sub>CNCF<sub>3</sub> sind von einer Farbänderung von Tiefviolett nach Tieforangerot, der Farbe der Produkte, begleitet. In einigen Fällen bereitete die Auftrennung der Produktgemische Schwierigkeiten, so daß eine Reihe von chromatographischen Varianten getestet wurde. Die Ausbeuten der Isocyanidkomplexe bewegen sich zwischen knapp 10 und 90%. Fast stets werden erhebliche Mengen [FeCp(CO)<sub>2</sub>]<sub>2</sub> mitgebildet. Lediglich aus 4-Chlor-2-(trifluormethyl)phenylisocyaniddichlorid wird das Monoisocyanidderivat 1b in sehr hoher Ausbeute und ohne eine Spur dieses Nebenprodukts erhalten. Auf der anderen Seite ergaben sämtliche Umsetzungen von [FeCp(CO)<sub>2</sub>]<sup>-</sup> mit Alkylisocyaniddichloriden wie Cl<sub>2</sub>CNMe oder Cl<sub>2</sub>CNC<sub>6</sub>H<sub>11</sub> ausschließlich und quantitativ Bis[dicarbonyl(cyclopentadienyl)eisen]. Die naheliegende Vermutung, daß generell Isocyaniddichloride mit stärker elektronenziehenden Gruppierungen in der Seitenkette produktspezifischer im Sinne von Gl. (1) reagieren, bestätigte sich jedoch nicht. Auch 4-Nitrophenylisocyaniddichlorid führt wieder nur zu [FeCp(CO)<sub>2</sub>]<sub>2</sub>, was hier allerdings eine Folge der oxidierenden Wirkung der NO2-Gruppe sein dürfte. Dergleichen entfällt bei Br<sub>2</sub>CNCF<sub>3</sub> (und Cl<sub>2</sub>CNC<sub>6</sub>F<sub>5</sub>, s. 3.) das dennoch die Bildung von viel Dicarbonyl(cyclopentadienyl)eisen-Dimer auslöst, dessen Abtrennung vom Zielkomplex 1f nur noch unvollständig gelingt.

$$\begin{bmatrix} Fe_{2}(\eta - C_{5}H_{5})_{2}(CO)_{3}CNR \end{bmatrix} \qquad \begin{bmatrix} Fe_{2}(\eta - C_{5}H_{5})_{2}(CO)_{2}(CNR)_{2} \end{bmatrix} \\ \hline \\ \hline \\ \frac{R}{1a} \quad Ph \\ \hline \\ b \quad 2,4 - CF_{3}C_{6}H_{3}Cl \\ c \quad 2,4 - C_{6}H_{3}Cl_{2} \\ d \quad 3,4 - C_{6}H_{3}Cl_{2} \\ e \quad CO_{2}C_{6}H_{11} \\ f \quad CF_{3} \\ g \quad C_{6}F_{5} \end{bmatrix}$$

Bei den Synthesen von 1c und 1e traten erstmals überraschend auch Diisocyanid-Komplexe (2c, 2e) auf, über deren Bildungsweise augenblicklich nur spekuliert werden kann. So ist z.B. denkbar, daß es unter bestimmten Reaktionsbedingungen zu einer Disproportionierung der Monoisocyanid- in Diisocyanidkomplexe und  $[FeCp(CO)_2]_2$ kommt.

Die IR-Spektren sämtlicher Komplexe 1 und 2 zeigen sowohl im Festkörper (KBr) als auch in Lösung jeweils eine starke, häufig breite Absorption im Bereich zwischen 1600 und 1700 cm<sup>-1</sup>, die sie klar als Isocyanid-verbrückte Spezies ausweist. 1e und 1f mit den Brückenliganden  $CNCO_2C_6H_{11}$ bzw.  $CNCF_3$  besitzen dabei mit 1633 (CH<sub>2</sub>Cl<sub>2</sub>) und 1654 cm<sup>-1</sup> (CHCl<sub>3</sub>) die niedrigsten v(CN<sub>B</sub>)-Absorptionen, 1a mit CNPh in Brückenposition die höchste. Gleichzeitig finden sich bei 1e und 1f die höchsten v(CO<sub>t</sub>)- und v(CO<sub>B</sub>)-Frequenzen (Tab. 1).

Die Bevorzugung der Brückenposition durch Isocyanidliganden mit elektronegativ substituierter Seitenkette ist bekannt; sie manifestiert sich bereits in der Reihe der Phenylisocyanid-Derivate von  $[FeCp(CO)_2]_2$ ,  $[Fe_2Cp_2(CO)_3-$ 

| Tab. 1. Charakteristische IR-Daten | [cm <sup>-1</sup> ] d | er µ-Isoc | yaniddi- u | nd -trieisenkom | plexe 1, | 2, 4, | , 5, 7 | 7 und 8 | sowie des | Acyleisenkom | olexes 6 <sup>[a</sup> |
|------------------------------------|-----------------------|-----------|------------|-----------------|----------|-------|--------|---------|-----------|--------------|------------------------|
|------------------------------------|-----------------------|-----------|------------|-----------------|----------|-------|--------|---------|-----------|--------------|------------------------|

|                   | Phase                           | v(CO <sub>t</sub> )           | v(CO <sub>B</sub> ) | v(CN <sub>B</sub> ) | Sonstige                                             |
|-------------------|---------------------------------|-------------------------------|---------------------|---------------------|------------------------------------------------------|
| 1a                | KBr                             | 1978s, 1927s                  | 1782s               | 1691s               |                                                      |
|                   | CH <sub>2</sub> H <sub>2</sub>  | 1991vs, 1951vs                | 1790s               | 1693s               |                                                      |
| 1b <sup>[b]</sup> | KBr                             | 1981s, 1942m                  | 1770m               | 1670m               |                                                      |
|                   | CH <sub>2</sub> Cl <sub>2</sub> | 1994vs, 1953s                 | 1772vs              | 1676s               |                                                      |
| 1c                | KBr                             | 1987vs, 1950s                 | 1792vs              | 1665vs              |                                                      |
|                   | CHCl <sub>3</sub>               | 1997vs, 1959s                 | 1793s               | 1687vs              |                                                      |
| 1d                | KBr                             | 1984sh, 1958s, 1929m          | 1788s               | 1672vs              |                                                      |
|                   | CHCl <sub>3</sub>               | 1999s, 1955s                  | 1781m               | 1675s, br.          |                                                      |
| 1e                | KBr                             | 1999vs, 1955s, strukt.        | 1800vs              | 1658vs, br.         | 1705sh [ <i>v</i> <sub>as</sub> (CO <sub>2</sub> R)] |
|                   |                                 |                               |                     |                     | $1207 vs [v_s(CO_2 R)]$                              |
|                   | CHCl <sub>3</sub>               | 2008s, 1970m                  | 1798m               | 1654m,br.           | 1700sh [ $v_{as}(CO_2R)$ ]                           |
| 1f                | KBr                             | 2048vs, 1925vs, 1940m         | 1807s               | 1625s               | 1209s, 1150m,                                        |
|                   |                                 |                               |                     |                     | $1123m [v(CF_3)]$                                    |
|                   | CH <sub>2</sub> Cl <sub>2</sub> | 2048s, 2000vs, 1970m          | 1807m               | 1633s               |                                                      |
| 1g <sup>[c]</sup> | CH <sub>2</sub> Cl <sub>2</sub> | 2003vs, 1965s                 | 1800m               | 1675m, br.          |                                                      |
| 2c                | KBr                             | 1982vs, 1942m                 |                     | 1680vs, br.         |                                                      |
|                   | CHCl <sub>3</sub>               | 1997m, 1960s                  |                     | 1671m, br.          |                                                      |
| 2e                | KBr                             | 1965vs                        |                     | 1648vs, br.         | $1715m [v_{as}(CO_2R)]$                              |
|                   |                                 |                               |                     |                     | 1198vs [v <sub>s</sub> (CO <sub>2</sub> R)]          |
|                   | CHCl,                           | 1980vs <sup>[d]</sup>         |                     | 1641vs, br.         | $1703 \text{sh} [v_{a}(CO_2R)]$                      |
|                   | •                               |                               |                     |                     | $1210vs [v.(CO_R)]$                                  |
| 49                | KBr                             | 2020s, 1980m, 1958m, 1950sh   | 1788s               | 1690s               | 1615m <sup>[e]</sup>                                 |
|                   | CH <sub>2</sub> Cl <sub>2</sub> | 2020vs, 1990s, 1965s, 1950sh  | 1787s               | 1687s               | 1620m <sup>[e]</sup>                                 |
| 4b                | KBr                             | 2018vs, 1987s, 1962s, 1945sh  | 1797s               | 1690vs              | 1615m <sup>[e]</sup>                                 |
|                   | CHCl,                           | 2028vs, 1999s, 1973s, 1958sh  | 1795m               | 1692s               | 1610s <sup>[e]</sup>                                 |
| 4c                | KBr                             | 2018s, 1978s, 1968s, 1945sh   | 1788s               | 1683s               | 1625m <sup>[e]</sup>                                 |
|                   | CH <sub>2</sub> Cl <sub>2</sub> | 2020vs, 1989s, 1968s, 1950sh  | 1790m               | 1683m               | 1627w <sup>[e]</sup>                                 |
| 5 <sup>[f]</sup>  | KBr                             | 2018s, 1980sh, 1959s          |                     |                     | 1617m <sup>[e]</sup>                                 |
|                   | CH <sub>2</sub> Cl <sub>2</sub> | 2018s, 1990m, 1965s           |                     |                     | 1618m <sup>[e]</sup>                                 |
| 6                 | CH <sub>2</sub> Cl <sub>2</sub> | 2025s, 1968s                  |                     |                     | 1652s [v(C=N)]                                       |
| 7                 | CH,CI,                          | 2035vs, 2010vs, 1988vs, 1959s | 1795m               | 1680m, br.          |                                                      |
| 8                 | CH <sub>2</sub> Cl <sub>2</sub> | 2035s, 2000vs                 |                     | 1680m, br.          |                                                      |

<sup>[a]</sup> t = terminal, B = Brücke.  $-^{[b]}$  Weitere Banden (KBr): 2167 m, 2110 s; (CH<sub>2</sub>Cl<sub>2</sub>) 2170 w, 2120 s cm<sup>-1</sup> [v(CN<sub>1</sub>)].  $-^{[c]}$  Weitere Banden: 1710 w, 1642 m, br. cm<sup>-1</sup> [v(CN)] (?).  $-^{[d]}$  Schulter bei 2000 cm<sup>-1</sup>.  $-^{[e]}$  [v(C=O<sub>Acyl</sub>)].  $-^{[f]}$  Weitere Banden (KBr): 2105 s; (CH<sub>2</sub>Cl<sub>2</sub>) 2122 s cm<sup>-1</sup> [v(CN<sub>1</sub>)].  $-^{[g]}$  Isocyaniddichlorid-Bande.

CNPh] und [FeCp(CO)CNPh]<sub>2</sub>, die ausschließlich in der Isocyanid-verbrückten Form vorliegen und nach Röntgenstrukturuntersuchungen cis- (1a) bzw. trans-konfiguiert sind<sup>[18]</sup>. Entsprechende Strukturzuweisungen treffen wir versuchsweise auch für die übrigen neu hergestellten Dieisenkomplexe. Tatsächlich finden sich in keinem der IR-Spektren – mit Ausnahme desjenigen von 1b, das zwei mittelstarke Absorptionen im  $v(CN_t)$ -Bereich zeigt – Anzeichen für einen terminalen Isocyanidliganden. Im <sup>1</sup>H-NMR-Spektrum von 1b {[D<sub>6</sub>]Aceton:  $\delta = 4.95$  (s, Cp, 10H); 7.50 (m,  $C_6H_3$ , 3H) erscheinen jedoch wie in dem von 1a { $[D_6]$ -Aceton:  $\delta = 4.90$  (s, Cp, 10H); 7.38 (m, Ph, 5H)} die beiden Cp-Liganden nur als ein einzelnes Singulett. Dagegen treten für die Cp-Liganden in 1e zwei Signale im Intensitätsverhältnis 3:1 auf {[D<sub>8</sub>]Toluol,  $20^{\circ}$ C:  $\delta = 1.52$  (m, C<sub>6</sub>H<sub>11</sub>, 11 H); 4.58, 4.68 (2s, Cp, 10H)}, was wir mit dem Vorliegen von cis-trans-Isomeren erklären. Hierzu paßt auch das Auftauchen überzähliger v(COt)-Absorptionen. cis- und trans-Isomere liegen beispielsweise auch in den Komplexen  $[Fe_2Cp_2(CO)_3CNtBu]$  und  $[FeCp(CO)CNMe]_2$  nebeneinander vor<sup>[17]</sup>.

Temperaturabhängige NMR-Messungen an 1e ergaben Koaleszenz der Signale (bzw. Verschwinden des Signals bei tieferem Feld) bei etwa +80°C, in der anschließenden Abkühlphase wurde eine erneute Aufspaltung des <sup>1</sup>H-NMR-Signals ab +70°C beobachtet. Mit der hieraus abgeschätzten Temperatur  $T_k$  von +75°C errechnet sich eine freie Aktivierungsenthalpie für die *cis-trans*-Isomerisierung ("Rotationsbarriere um die Fe-Fe-Bindung der brückengeöffneten Form", vgl. Lit.<sup>[17]</sup>) von 15–16 kcal/mol.

In den Massenspektren von 1e, 1f, 1g (s.3.) und 2e (Tab. 2) ist das Molekül-Ion jeweils höchste Massenlinie. Wie in vielen ähnlich gelagerten Fällen tritt anschließend die Serie der CO-Abspaltungsprodukte auf. Die Monocarbonylisocyanid- und die carbonylfreien Isocyanid- und Diisocyanid-Komplexfragmente erscheinen durchwegs mit hoher Intensität, was für die Stärke der Isocyanid-Metall-Bindung spricht. Bemerkenswert ist, daß aus den Verbindungen

1e und 2e nach erfolgter CO-Eliminierung je Isocyanidligand ( $CNCO_2C_6H_{11}$ ) zuerst ein CO<sub>2</sub>-Molekül herausgespalten wird und die Cyclohexylgruppe erst danach folgt.

Tab. 2. Ausgewählte Massenspektren [m/z (%)] von (µ-Isocyanid)dieisen-Komplexen

| Fragment [a]                          | 1e        | 2e        | 1f        | 1g <sup>[b]</sup> |
|---------------------------------------|-----------|-----------|-----------|-------------------|
| M+                                    | 479 (17)  | 604(21)   | 421 (14)  | 519(17)           |
| [M-CO]+                               | 451 (9)   | 576 (4)   | 393 (24)  | 491(9)            |
| [M-2CO]+                              | 423 (49)  | 548 (100) | 365 (19)  | 463(17)           |
| [M-2CO-CO <sub>2</sub> ] <sup>+</sup> |           | 504 (12)  |           |                   |
| $[Fe_2Cp_2(CN)CNR]^+$                 |           | 421 (53)  |           |                   |
| $[Fe_2Cp_2(CNR)]^+$                   | 395 (26)  | 395 (11)  | 337 (24)  | 435(60)           |
| $[Fe_2Cp_2(CNCy)]^+$                  | 351 (26)  | 351 (67)  |           |                   |
| $[Fe_2Cp_2(CN)]^+$                    | 268 (100) | 268 (100) | 268 (9)   |                   |
| $[Fe_2Cp_2]^+$                        | 242 (19)  | 242 (15)  | 242 (5)   | 242(9)            |
| [FeCp <sub>2</sub> ] <sup>+</sup>     |           |           | 186 (100) | 186(100)          |

<sup>[a]</sup> M =  $Fe_2Cp_2(CO)_3CNR$  (1e,f,g) bzw. [FeCp(CO)CNR]<sub>2</sub> (2e); Cy =  $C_6H_{11}$ . - <sup>[b]</sup> Weitere Fragmente: 314 (34) [FeCpCNC<sub>6</sub>F<sub>5</sub>]<sup>+</sup>, 121 (57) [FeCp]<sup>+</sup>.

# 2. Trimetallierung von Isocyaniddichloriden mit einer COCI-Seitenkettenfunktionalisierung

Als weiteren Typ funktioneller Isocyaniddichloride untersuchten wir die *m*-Chlorcarbonyl-substituierten Phenylderivate 3a-c. Ihre Umsetzungen mit [FeCp(CO)<sub>2</sub>]<sup>-</sup> wurden unter den gleichen Bedingungen durchgeführt, die wir für die unter 1. beschriebenen Reaktionen anwandten, jedoch wurde die dreifach molare Menge Metallbasen eingesetzt, da wir mit einem – möglicherweise sogar bevorzugten – Chlor/Metall-Austausch an der Säurechloridgruppe rechneten. Dieser tritt in der Tat zusammen mit der Entchlorierung der Isocyaniddichlorid-Funktion ein, so daß die dreikernigen Komplexe 4a-c erhalten wurden.





Bei allen drei Reaktionen war wieder die Carbonyl-Stammverbindung nachzuweisen. In einem Fall isolierten wir den Zweikernkomplex 5, dessen Auftreten ein Beleg für Produkt C im allgemeinen Reaktionsschema 1 (s. 1.) ist und gleichzeitig auf einen stufenweisen Aufbau der Verbindungen 4 womöglich über ein primäres metallfunktionalisiertes Isocyaniddichlorid 6 hindeutet (Gl. 2). Dessen Darstellung gelang uns aus einem 1:1-Ansatz von  $[FeCp(CO)_2]^-$  und **3a**; es handelt sich um ein rotbraunes zähflüssiges, aber offenbar analysenreines Öl (Tab. 3), von dem wir lediglich ein Lösungs-IR-Spektrum aufnahmen.



Die Charakterisierung der Verbindungen 4a-c und 5 ist wieder auf Lösungs- und Festköper-IR-Spektren gestützt (Tab. 1) sowie durch je ein repräsentatives <sup>1</sup>H-NMR- und Massenspektrum ergänzt. Um die IR-Zuordnung zu erleichtern, synthetisierten wir den Acylkomplex Fe(COPh)Cp-(CO)<sub>2</sub> als Vergleichssubstanz, die in Lösung zwei sehr starke Absorptionen bei 2025 und 1970 cm<sup>-1</sup> [v(CO)] und eine weitere starke Bande bei 1610 cm<sup>-1</sup> [v(CO)] und eine weitere starke Bande bei 1610 cm<sup>-1</sup> [v(C=O<sub>Acyl</sub>)] aufweist<sup>[19]</sup>. Aus Werten dieser Größenordnung und gemittelten Bandenlagen für den Isocyanid-verbrückten Dieisenteil lassen sich die Spektren der Dreikernkomplexe 4 problemlos additiv zusammensetzen. Entsprechendes gilt für 5 wie 6, das auch die geforderte Bande (1652 cm<sup>-1</sup>) im für die Isocyaniddichlorid-Funktion typischen Bereich aufweist.

Das <sup>1</sup>H-NMR-Spektrum von **4c** zeigt nur zwei Cp-Signale [ $\delta = 4.88$  (s, 10 H); 5.03 (s, 5 H)] und die Linien der Aromatenprotonen [ $\delta = 7.05 - 7.42$  (m, 3 H)]; der Komplex liegt demnach isomerenrein (und vermutlich *cis*-konfiguriert) vor. Im Massenspektrum beobachtet man das Molekül-Ion und von ihm ausgehend interessanterweise die sukzessive Abspaltung von bis zu sechs (!) CO-Gruppen zu einem Arylisocyanid-verklammerten (CpFe)<sub>3</sub>-Fragment, das Basispeak ist. Diesem Zerfall überlagert sich ab Massenzahl 462 ein zweiter, der sich nun vom Zweikern-Fragment [Fe<sub>2</sub>Cp<sub>2</sub>(CO)<sub>3</sub>-CNC<sub>6</sub>H<sub>3</sub>Cl]<sup>+</sup> ableitet (Exp. Teil).

#### 3. Di- und Trimetallierung von Pentafluorphenylisocyaniddichlorid und Röntgenstrukturanalyse von 7

Pentafluorphenylisocyaniddichlorid nimmt hier in mehrfacher Hinsicht eine Sonderstellung ein. Zunächst bestand ein Hauptinteresse darin, das ihm zugrundeliegende, frei sehr zersetzliche und deshalb noch wenig untersuchte funktionelle Isocyanid – vermutlich ein ähnlich exzellenter  $\pi$ -Akzeptor wie CNCF<sub>3</sub><sup>[20,21]</sup> – auf die beschriebene schonende Weise in [FeCp(CO)<sub>2</sub>]<sub>2</sub> einzuführen<sup>[22]</sup>. Tatsächlich läßt sich nach Umsetzung mit [FeCp(CO)<sub>2</sub>]<sup>-</sup> ein Komplex vom Typ **1** (**1g**) nachweisen, doch enttäuschen Ausbeute und Reinheitsgrad; wie **1f** fällt **1g** neben viel [FeCp(CO)<sub>2</sub>]<sub>2</sub> an, von dem es selbst mit aufwendigen chromatographischen Mitteln nicht vollständig abgetrennt werden kann (Exp. Teil). Trotzdem ist **1g** durch sein IR- (Tab. 1), Massen(Tab. 2) und <sup>1</sup>H- sowie <sup>19</sup>F-Kernresonanzspektrum – letzteres weist das typische AA'BB'C-Muster des Pentafluorphenylrings auf – ausreichend charakterisiert.

Hauptprodukt der Reaktion ist jedoch eine in rotbraunen Kristallen anfallende Verbindung (7), bei der über die Enthalogenierung der Isocyaniddichlorid-Funktion hinaus Fluoridsubstiution im Kern stattgefunden hat. (Eine entsprechende Substitution des in den Isocyaniddichloriden **3** kernständigen Chloratoms wurde dagegen in keinem Fall beobachtet.)



Wie schon aus dem AA'BB'-Spintyp des <sup>19</sup>F-NMR-Spektrums hervorgeht, ist das dritte Äquivalent Metallbase in die *para*-Position eingetreten<sup>[23]</sup>; insgesamt resultiert so ein zu Typ **4** verwandter Dreikernkomplex, von dem eine Kristallstrukturanalyse vorliegt.

Trotz des qualitativ nicht voll befriedigenden Datensatzes können wir ihr folgende Strukturaussagen entnehmen:

1. Das Kristallgitter ist aus diskreten Molekülen 7 (Abb. 1) aufgebaut, zwischen denen keine ungewöhnlich nahen Kontakte bestehen; größere Lücken sind von Solvensmolekülen ( $CH_2Cl_2$ ) besetzt, bei denen Fehlordnung vorliegt.



Abb. 1. Molekülstruktur von 7. Die thermischen Ellipsoide entsprechen 50% Aufenthaltswahrscheinlichkeit

2. Der vom funktionellen metallierten Isocyanid und einem CO-Liganden überbrückte Dieisenteil ist (wie alle röntgenographisch vermessenen *Mono*isocyanidderivate von  $[FeCp(CO)_2]_2^{(17)}$  *cis*-konfiguriert, d. h. die beiden Cp-Liganden (wie auch die terminalen CO-Gruppen) befinden sich auf der gleichen Seite einer durch die Atome Fe1,Fe2,C5,C6 gelegten "besten" Ebene.

3. Der zentrale  $Fe_2(\mu-C)_2$ -Vierring ist erwartungsgemäß längs Fe1…Fe2 gefaltet; der Interplanarwinkel beträgt  $158.7(2.3)^{\circ}$  und zeigt damit eine vergleichsweise starke Faltung an, für die sterische wie elektronische Ursachen verantwortlich gemacht werden können<sup>[1,17]</sup>.

4. Die diversen in 7 vorhandenen Fe-C-Bindungen weisen im Einklang mit gängigen Bindungsvorstellungen und publizierten Strukturen eine in der Reihenfolge Fe-CO<sub>t</sub> (1.69 Å), Fe-CN<sub>B</sub> (1.89 Å), Fe-CO<sub>B</sub> (1.93 Å), Fe-C(Aryl) [1.95(4) Å] und Fe-C(Cp) (2.11 Å) zunehmende Länge auf, deren Werte durchaus mit Literaturdaten korrespondieren; dennoch verbieten die hohen Standardabweichnungen eine detailliertere Diskussion.

5. Sämtliche Cyclopentadienylringe und der zentrale Benzolkern sind nach "Beste-Ebenen"-Rechnungen sehr weitgehend planar, eine Feststellung, die auf das  $\pi$ -Elektronensystem  $\mu_3$ -Brücke nun keineswegs zutrifft. Vielmehr beschreiben die Torsionswinkel Fe1-C6-N-C61  $[-19.7(74)^{\circ}]$  und C6-N-C61-C62  $[-88.7(45)^{\circ}]$  eine Schraubenbewegung hin zu einer praktisch orthogonalen Anordung von  $[Fe_2]\mu$ -CNC- und C<sub>6</sub>F<sub>4</sub>-Teil, die  $p_{\pi}$ - $p_{\pi}$ -Wechselwirkungen [möglicherweise zugunsten einer solchen des Typs (N) $n_{\pi}$ -(C6) $p_{\pi}$ ] ausschließt.

Diese Geometrie scheint in derartigen Komplexen der (hauptsächlich doch sterisch motivierte) Regelfall zu sein<sup>[1,17,18,24,25]</sup>.

Von den im Ansatz  $Cl_2CNC_6F_5 + [FeCp(CO)_2]^-$  dünnschichtchromatographisch festgestellten mehreren Produkten gelang lediglich noch die Isolierung eines weiteren und dies nur in Spuren. Diese Verbindung 8, die sich zunächst nur als Verunreinigung von 7 bemerkbar gemacht hatte, ist nach dem Massen- und <sup>19</sup>F-NMR-Spektrum als Bis-2,3,5,6tetrafluorphenylisocyanid-verbrücktes [FeCp(CO)<sub>2</sub>]<sub>2</sub>-Derivat vom Typ der Komplexe 2 zu formulieren.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Förderung dieser Arbeit. Herrn Dr. E. Kühle, Farbwerke Bayer AG, gilt unser Dank für die Überlassung einer Reihe von Isocyaniddichloriden.

#### **Experimenteller** Teil

Alle Versuche wurden routinemäßig unter Ausschluß von Luft und Feuchtigkeit unter Stickstoff oder Argon in Schutzgas-gesättigten, getrockneten und frisch destillierten Lösungsmitteln durchgeführt. Die Reaktionsgefäße wurden im Hochvak, ausgeheizt. -Chromatographische Trennungen: Kieselgel Merck (0.2-0.5 mm bzw. 0.015 - 0.040 mm). - Fe(COPh)Cp(CO)<sub>2</sub> wurde wie in Lit.<sup>[19]</sup> beschrieben,  $Na[FeCp(CO)_2]$  (= NaFp) in Anlehnung an eine Vorschrift von Ellis und Flom<sup>[26]</sup>, hergestellt; das Carbonylmetallat kam direkt als die ca. 0.08 M Tetrahydrofuranlösung zum Einsatz, als die es nach Filtrieren des Reaktionsansatzes durch eine mit Seesand beschickte Fritte vorlag. Das Gros der Isocyaniddichloride stellte uns dankenswerterweise die Bayer AG, Leverkusen, zur Verfügung, Br<sub>2</sub>CNCF<sub>3</sub> und Cl<sub>2</sub>CNC<sub>6</sub>F<sub>5</sub> wurden nach bereits publizierten Vorschriften synthetisiert<sup>[27,28]</sup>. - IR: Perkin-Elmer 621 und 983. - NMR: Jeol JNM-C-60 HL und FX 90Q. - MS: Varian CH 5 (Anregungsenergie 70 eV), Finnigan MAT 711 (80 eV). -Elementaranalysen (C,H,N): Heraeus, CHN-Rapid. - Schmelzbzw. Zersetzungspunkte (unkorrigiert): Büchi Modell 510.

1.  $\mu$ -Carbonyl-dicarbonylbis(cyclopentadienyl)( $\mu$ -phenylisocyanid)dieisen (1 a): Zu einer auf -78 °C gekühlten Lösung von 1.77 g (10.0 mmol) NaFp (s.o.) in 125 ml THF läßt man aus einer Pipette

|            | Farbe          | Schmp. (°C)     | Ausbeute (g (%)) | Summenformel<br>(Molmasse)                       | Ber. C<br>Gef. | Ber. H<br>Gef. | Ber. N<br>Gef. |
|------------|----------------|-----------------|------------------|--------------------------------------------------|----------------|----------------|----------------|
| 1a         | tiefviolett    | 125 - 130       | 0.54 (25)        | $C_{20}H_{15}Fe_2NO_3$<br>(429.04)               | 55.99<br>56.53 | 3.53<br>3.51   | 3.27<br>3.30   |
| 1b         | schwarzviolett | 78              | 3.4 (90)         | $C_{21}H_{13}CIF_{3}Fe_{2}NO_{3}$<br>(531.50)    | 47.45<br>4710  | 2.47<br>2.54   | 2.64<br>2.55   |
| 1c         | violett        | 151             | 0.3(15)          | $C_{20}H_{13}Cl_2Fe_2NO_3$<br>(497.90)           | 48.24<br>48.05 | 2.64<br>2.70   | 2.81<br>2.71   |
| 1d         | violett        | ab 160 (Zers.)  | 0.3(12)          | $C_{20}H_{13}Cl_2Fe_2NO_3$<br>(497.90)           | 48.24<br>48.79 | 2.64<br>2.53   | 2.81<br>2.79   |
| 1e         | karminrot      | 78              | 0.2(8)           | $C_{21}H_{21}Fe_2NO_5$<br>(479.00)               | 52.61<br>52.54 | 4.38<br>4.32   | 2.92<br>2.98   |
| 1f         | orangerot      | 105             |                  | $C_{15}H_{10}F_{3}Fe_{2}NO_{3}$<br>(421.15)      | 42.76<br>39.83 | 2.38<br>2.02   | 3.33<br>2.30   |
| 2c         | hellviolett    | ab 145 (Zers.)  | 0.2(11)          | $C_{26}H_{16}Cl_{4}Fe_{2}N_{2}O_{2}$<br>(641.91) | 48.61<br>48.34 | 2.52<br>2.47   | 4.37<br>4.05   |
| 2e         | rotviolett     | ab 112 (Zers.)  |                  | $C_{28}H_{32}Fe_2N_2O_6$<br>(604.37)             | 55.63<br>58.81 | 5.30<br>6.39   | 4.64<br>4.84   |
| <b>4</b> a | tiefviolett    | 108-110         | 0.2(8)           | $C_{28}H_{19}Fe_3NO_6$<br>(633.23)               | 53.13<br>53.54 | 3.03<br>3.33   | 2.21<br>2.14   |
| 4b         | hellviolett    | 110-130 (Zers.) | 0.2(10)          | $C_{28}H_{18}ClFe_{3}NO_{6}$<br>(667.51)         | 50.37<br>50.33 | 2.69<br>2.74   | 2.09<br>2.11   |
| 4c         | tiefviolett    | 120-130 (Zers.) | 0.2(10)          | $C_{28}H_{18}ClFe_{3}NO_{6}$<br>(667.51)         | 50.37<br>50.33 | 2.69<br>2.74   | 2.09<br>2.11   |
| 6          | rotbraun       | Öl              |                  | $C_{15}H_9Cl_2FeNO_3$<br>(376.84)                | 47.66<br>47.63 | 2.40<br>2.96   | 3.71<br>3.63   |

Tab. 3. Analysen, Ausbeuten und physikalische Eigenschaften der Eisenkomplexe 1, 2, 4 und 6

eine auf die gleiche Temp. gebrachte Lösung von 0.67 ml (0.87 g, 5.0 mmol) Phenylisocyaniddichlorid in 175 ml THF fließen. Die Reaktion ist, wie ein IR-Spektrum der Lösung zeigt, unmittelbar nach dem Zusammengeben der Reaktanden bereits beendet. Man entfernt das Lösungsmittel i. Vak., nimmt den Rückstand in wenig CH<sub>2</sub>Cl<sub>2</sub> auf und chromatographiert das Gemisch an Kieselgel mit Dichlormethan als Laufmittel (7 × 4 cm-Säule). Die erste Fraktion besteht aus [FeCp(CO)<sub>2</sub>]<sub>2</sub> (0.7 g, 39%), die zweite aus **1**a.

2.  $\mu$ -Carbonyl-dicarbonyl[ $\mu$ -4-chlor-2-(trifluormethyl)phenylisocyanid]bis(cyclopentadienyl)dieisen (1 b): Man vereinigt die -78 °C kalten Lösungen von 2.55 g (14.4 mmol) NaFp in 210 ml THF und von 2.0 g (7.2 mmol) 4-Chlor-2-(trifluormethyl)phenylisocyaniddichlorid in 100 ml des gleichen Solvens, läßt auf Raumtemp. erwärmen und entfernt das Lösungsmittel i. Vak. Den Rückstand nimmt man in Dichlormethan auf, filtriert über eine mit Seesand beschickte Fritte und engt erneut zur Trockne ein. Das so gewonnene Produkt 1b ist bereits analysenrein (Tab. 3).

3. Umsetzung von Dicarbonyl( $\eta$ -cyclopentadienyl)ferrat mit 2,4-Dichlorphenylisocyaniddichlorid: Die Lösung von 1.42 g (8.0 mmol) NaFp und 0.97 g (4.0 mmol) 2,4-Dichlorphenylisocyaniddichlorid in je 100 ml THF werden bei -78 °C zusammengegeben. Man verfährt weiter wie unter 1., d.h. entwickelt das Produktgemisch auf einer 5 × 4 cm-Kieselgelsäule. Die erste Fraktion besteht wieder aus [FeCp(CO)<sub>2</sub>]<sub>2</sub>, die zweite enthält 1c. Dünnschichtchromatographisch beobachtet man eine dritte Verbindung, die sich an der Säule nicht rein isolieren läßt. Man wäscht daher die Säule mit CH<sub>2</sub>Cl<sub>2</sub>/THF (10:1) aus, entfernt das Lösungsmittel i. Vak. und entwickelt jetzt mit *n*-Pentan/CH<sub>2</sub>Cl<sub>2</sub> (5:3) auf einer präparativen DC-Platte (Kieselgel, 20 × 20 cm). Es resultieren ca. 200 mg (11%) hellviolettes 2c.

4.  $\mu$ -Carbonyl-dicarbonylbis(cyclopentadienyl)( $\mu$ -3,4-dichlorphenylisocyanid)dieisen (1d): Ansatz: 1.77 g (10.0 mmol) NaFp und 1.2 g (5.0 mmol) 3,4-Dichlorphenylisocyaniddichlorid in je 100 ml THF. Reaktionstemp. -78 °C. Aufarbeitung siehe 1.

5. Umsetzung von Dicarbonyl(n-cyclopentadienyl)ferrat mit Cyclohexyloxycarbonylisocyaniddichlorid: 125 ml der NaFp-Stammlösung in THF (1.77 g, 10.0 mmol) läßt man bei -78 °C zu einer auf die gleiche Temp. gebrachten Lösung von 1.06 g (5.0 mmol) Cl<sub>2</sub>CNCO<sub>2</sub>C<sub>6</sub>H<sub>11</sub> in 100 ml THF tropfen. Bereits nach wenigen min entfernt man das Lösungsmittel, rührt kurz mit Pentan aus und erhält so ein pulvriges Produkt, allerdings ohne Trenneffekt. Mittels Chromatographie an Kieselgel (Laufmittel Ether) entfernt man sodann [FeCp(CO)<sub>2</sub>]<sub>2</sub>, wäscht die Säule mit Ether/Aceton (10:3) aus und entfernt das Solvens im Wasserstrahlvak. Die weitere Auftrennung der Substanzen erfolgt auf einer DC-Platte (Kieselgel, 20 × 20 cm, Laufmittel Ether). Nach der Entwicklung trocknet man das Chromatogramm mit einem Fön, nimmt die Fraktionen von der Platte ab, eluiert mit Ether, engt die Filtrate ein und trocknet abschließend i. Hochvak. Verbindung 1e ist bereits analysenrein, bei 2e wird wegen der geringen Substanzmenge auf eine weitere Reinigung verzichtet.

1e: <sup>1</sup>H-NMR (CDCl<sub>3</sub>, int. Standard CHCl<sub>3</sub>):  $\delta = 1.52$  (m, C<sub>6</sub>H<sub>11</sub>, 11 H); 4.76, 4.83 (2 s, Cp, 10 H); ([D<sub>8</sub>]Toluol, +80 °C):  $\delta = 1.39$  (m, C<sub>6</sub>H<sub>11</sub>), 4.65 (s, Cp).

6.  $\mu$ -Carbonyl-dicarbonylbis(cyclopentadienyl) ( $\mu$ -trifluormethylisocyanid)dieisen (1f): Zu 125 ml der NaFp-Stammlösung (1.77 g, 10.0 mmol) werden bei -78 °C unverdünnt aus einer Pipette 1.28 g (5.0 mmol) Trifluormethylisocyaniddibromid getropft. Das nach Entfernen des Lösungsmittels i. Vak. zurückbleibende Rohprodukt bringt man als Dichlormethanlösung auf eine 10 × 4 cm-Kieselgelsäule und entwickelt mit CH<sub>2</sub>Cl<sub>2</sub>. Die erhaltenen zwei Fraktionen sind jedoch noch nicht sauber, so daß sie ein weiteres Mal auf präparativen DC-Platten entwickelt werden. Trotzdem werden in der 1. Fraktion nach wie vor [FeCp(CO)<sub>2</sub>]<sub>2</sub> und 1f nebeneinander identifiziert, während die Hauptmenge des gesuchten, aber weiterhin nicht analysenreinen 1f in Fraktion zwei enthalten ist.

7. Reaktionen von Dicarbonyl(η-cyclopentadienyl)ferrat mit Chlorcarbonyl-substituierten Arylisocyaniddichloriden: Jeweils 125 ml (10.0 mmol) der NaFp-THF-Lösung werden bei -78°C mit Lösungen von 0.76 g (3.3 mmol) 3a bzw. 0.89 g (3.3 mmol) 3b und 3c in je 100 ml THF umgesetzt. Nach dem Erwärmen auf Raumtemp. entfernt man das Lösungsmittel i. Ölpumpenvak., nimmt den klebrigen Rückstand in wenig CH2Cl2 auf und filtriert über eine kurze (1 cm) Kieselgelsäule. Auf ihr bleibt ein gallertartiger Körper zurück, der nicht weiter untersucht wurde. Das so gewonnene Filtrat wird zur Trockne eingeengt, dann wird wieder in CH2Cl2 gelöst und zur Abtrennung von [FeCp(CO)<sub>2</sub>]<sub>2</sub> chromatographiert (3  $\times$ 4 cm-Kieselgelsäule, CH<sub>2</sub>Cl<sub>2</sub>). Die verbleibenden Produkte 4a-cwerden mit CH2Cl2/THF (10:1) eluiert und schließlich dünnschichtchromatographisch (Kieselgel) rein isoliert. Hierbei empfiehlt es sich, höchstens 0.3 g Substanz aufzutragen. Die Ausbeuten wurden nicht optimiert.

**4c**: MS: m/z (%) = 667 (12), 639 (26), 611 (38), 583 (38), 555 (17), 527 (21), 499 (100)  $[M^+ - n CO (n = 0-6)]$ ; 462 (59)  $[M^+$  $FeCp(CO)_3$ ; 434 (38) [M<sup>+</sup> - 6 CO - Cp]; 427 (13), 399 (18), 343 (21)  $[Fe_2Cp_2(CO)_3CNC_6H_3^+ - n CO (n = 0, 1, 3)];$  378 (164)  $[Fe_2Cp_2CNC_6H_3Cl^+]; 298 (64), 270 (26), 242 (100) [Fe_2Cp_2(CO)_2^+]$ - n CO (n = 0-2); 287 (17) [FeCp<sub>2</sub>CNC<sub>6</sub>H<sub>3</sub><sup>+</sup>]; 222 (24) [FeCpCNC<sub>6</sub>H $_3^+$ ].

8. 1:1-Umsetzung von Dicarbonyl(n-cyclopentadienyl)ferrat mit 3a: 125 ml (10.0 mmol) der NaFp-Lösung und eine Lösung von 2.76 g (10.0 mmol) **3a** in 125 ml THF werden auf -78 °C gekühlt und vereinigt. Dann wird das Lösungsmittel i. Vak. entfernt und die zurückbleibende viskose Substanz an Kieselgel ( $10 \times 4$  cm-Säule, CH<sub>2</sub>Cl<sub>2</sub>) chromatographiert. [FeCp(CO)<sub>2</sub>]<sub>2</sub> läßt sich so gut abtrennen, zur Abtrennung von unumgesetztem Isocyaniddichlorid muß dagegen mehrfach chromatographiert oder eine entsprechend lange Säule (20-25 cm) verwendet und mit viel CH<sub>2</sub>Cl<sub>2</sub> ausgewaschen werden; beide Prozesse sind sehr verlustreich. Die Ausbeute an 6 wurde nicht bestimmt.

9. Umsetzung von Pentafluorphenylisocyaniddichlorid mit Dicarbonyl(n-cyclopentadienyl)ferrat: Zu einer auf -78°C gekühlten Lösung von 2.12 g (12.0 mmol) NaFp in 150 ml THF fügt man 2.65 g (10.0 mmol) Cl<sub>2</sub>CNC<sub>6</sub>F<sub>5</sub>, entfernt die Kühlung und läßt noch 3 h bei Raumtemp. rühren. Anschließend wird zentrifugiert, der abgetrennte Bodenkörper mit THF gewaschen, erneut zentrifugiert und die beiden Zentrifugate vereinigt. Nach Entfernen des Lösungsmittels i.Vak. wird in Dichlormethan aufgenommen, mit Kieselgel (Woelm, 63-200 µm) versetzt und im Rotationsverdampfer wieder zur Trockne eingeengt. Das so imprägnierte Kieselgel bringt man auf eine Kieselgelsäule und eluiert zunächst mit Petrolether/CH2Cl2 (4:1). Die aufgefangene Hauptfraktion (Fraktion 1) enthält wenig 1g neben viel [FeCp(CO)<sub>2</sub>]<sub>2</sub>. Elution mit CH<sub>2</sub>Cl<sub>2</sub> ergibt eine zweite Fraktion, die hauptsächlich aus 7 (und etwas 8) besteht. Beide Fraktionen werden zur weiteren Auftrennung einer Mitteldruck-Säulenchromatographie [Fa. Reichelt; l = 90 cm, d = 2.5 cm; Kieselgel 60, Merck, 0.015-0.040 mm; Petrolether (Siedebereich 40-60°C)/CH<sub>2</sub>Cl<sub>2</sub> (4:1)] unterworfen. Die am langsamsten laufende Zone von Fraktion 1 ergibt beim Einengen i. Vak. 13 mg rote Kristalle (1g) mit Schmp. >210°C (ab 190°C Dunkelfärbung), die allerdings nach einem DC-Test noch immer Spuren von [Fe- $Cp(CO)_2]_2$  enthält.

Die Entwicklung von Fraktion 2 auf der Mitteldrucksäule (s.o.) ergibt drei Banden, von denen die mittlere das Hauptprodukt 7 enthält. Sie wird nach Elution mit CH2Cl2 i. Vak. eingeengt und mit n-Pentan versetzt. Bei -18°C kristallisieren 400 mg rotbraunes 7 mit Schmp. 110-119°C (Zers.). Elution und Einengen i. Vak. der am langsamsten laufenden Zone führen schießlich zu Spuren eines roten Feststoffes, der spektroskopisch als 8 identifiziert wird.

1g: <sup>1</sup>H-NMR ([D<sub>6</sub>]Aceton):  $\delta = 4.99$  (s, Cp).  $- {}^{19}$ F-NMR  $([D_6]$ Aceton, ext. Standard CFCl<sub>3</sub>):  $\delta = -152.7 (2F), -162.5 (2F),$ -164.6 (1 F).

7: <sup>1</sup>H-NMR ([D<sub>6</sub>]Aceton):  $\delta = 5.27$  (s, Cp, 5H); 4.88 (s, Cp, 10H). - <sup>19</sup>F-NMR ([D<sub>6</sub>]Aceton, ext. Standard CFCl<sub>3</sub>):  $\delta = -102.0$  (2 F); -148.0 (2 F). - MS: m/z (%) = 677 (2), 649 (2), 621 (3), 593 (2),565 (1), 537 (12)  $[M^+ - n CO (n = 0-5)].$ 

8: <sup>19</sup>F-NMR (CDCl<sub>3</sub>, ext. Standard CFCl<sub>3</sub>):  $\delta = -108.4$  (2F);  $-153.5 (2 \text{ F}) - \text{MS:} m/z (\%) = 648 (3), 620 (3), 592 (5) [M^+ - n]$ CO (n = 0 - 2)].

10. Röntgenstrukturanalyse von 7<sup>[29]</sup>: Weissenberg-Aufnahmen von Einkristallen von 7 ergaben orthorhombische Symmetrie und die Auslöschungsbedingungen h00: h = 2n + 1, 0k0: k = 2n + 1und 00*l*: l = 2n + 1, d.h. Raumgruppe  $P2_12_12_1$  (Nr. 19). Die Gitterkonstanten a = 21.504(2), b = 8.296(1) und c = 15.942(2) Å mit  $V = 2844.0 \text{ Å}^3$ ,  $d_{\text{ber}} = 1.708 \text{ g cm}^{-3}$  und Z = 4 wurden aus 15 diffraktometrisch vermessenen hochindizierten Reflexen bestimmt. Die Intensitätsmessung (20 °C) erfolgte an einem blättchenförmigen Kristall der Größe 0.31 × 0.14 × 0.05 mm auf einem Stoe-Vierkreisdiffraktometer (Mo- $K_{\alpha}$ -Strahlung, Graphit-Monochromator,  $\omega/2\Theta$ -Abtastung,  $5^{\circ} \leq 2\Theta \leq 40^{\circ}$ , h: 0 bis 20, k: 0 bis 7, l: 0 bis 15). Von den erhaltenen 1541 symmetrieunabhängigen Reflexen besaßen 606 eine Intensität  $I < 2\sigma(I)$ ; sie wurden als unbeobachtet eingestuft. - Die Struktur wurde mit direkten Methoden gelöst und nach der Methode der kleinsten Fehlerquadrate verfeinert (197 Parameter). Mit anisotropen Temperaturfaktoren für Fe und isotropen für C, N, O und F sowie Einheitsgewichten und isotroper Extinktionskorrektur (Extinktionskoeffizient g = 0.003) wurde schließlich ein R-Wert von 0.083 erreicht. Die maximale Restelektronendichte betrug 1 e/Å<sup>3</sup>, die maximale Parameterverschiebung nach dem letzten Verfeinerungszyklus weniger als 1% der Standardabweichung.

Die Packung des sehr sperrigen 7 hinterläßt große Lücken, die von Solvensmolekülen (CH<sub>2</sub>Cl<sub>2</sub>) in mindestens zwei Orientierungen besetzt sind. Diese Fehlordnung wird durch Angabe eines C- und dreier Cl-Atome mit unterschiedlichen Populationsparametern (und isotropen Temperaturfaktoren) angenähert beschrieben. Der fehlgeordnete Gitteraufbau dürfte die Ursache für das schlechte Streuvermögen der Kristalle sein, das besonders bei größeren 20-Winkeln stark abfällt. Der hohe Anteil an unbeobachteten Reflexen und das ungünstige Verhältnis von verfeinerten Parametern zu Reflexintensitäten >  $2\sigma(I)$  von ca. 1:5 führt zu relativ großen Standardabweichungen bei den Koordinaten und damit bei den Bindungslängen und -winkeln. Die H-Atomlagen konnten nicht bestimmt werden.

Die kristallographischen Rechnungen wurden mit Programmen des Systems XTAL3 durchgeführt<sup>[30]</sup>.

- <sup>[2]</sup> VIII. Mitteilung: W. P. Fehlhammer, A. Schröder, W. Sperber, J. Fuchs, Chem. Ber. 1992, 125, 1087-1092; voranstehend. <sup>[3]</sup> B. D. Dombek, R. J. Angelici, J. Am. Chem. Soc. 1973,
- 7516-7518; M. Kubota, C. J. Curtis, Inorg. Chem. 1974, 13, 2277-2278.
- <sup>[4]</sup> K. Öfele, Angew. Chem. 1968, 80, 1032-1033; Angew. Chem. Int. Ed. Engl. 1968, 7, 950; ibid. 1969, 81, 936 bzw. 1969, 8, 916. <sup>[5]</sup> A. J. Hartshorn, M. F. Lappert, K. Turner, J. Chem. Soc., Chem.
- Commun. 1975, 929-930.
- <sup>[6]</sup> A. J. Hartshorn, M. F. Lappert, J. Chem. Soc., Chem. Commun. 1976, 761 - 762.
- <sup>[7]</sup> H. Fischer, A. Motsch, W. Kleine, Angew. Chem. 1978, 90, 914-915; Angew. Chem. Int. Ed. Engl. 1978, 17, 842.

<sup>&</sup>lt;sup>[1]</sup> Professor Wolfgang Beck zum 60. Geburtstag.



- <sup>[8]</sup> Nach praktisch gleichem Muster reagieren geminale Dichloride mit Organoelement-14-substituierten Carbonylmetallaten zu Carbenkomplexen: U. Kirchgässner, H. Piana, U. Schubert, J. Am. Chem. Soc. **1991**, 113, 2228–2232.
- <sup>[9]</sup> D. Mansuy, Pure Appl. Chem. **1980**, 52, 681-690; D. Mansuy, J.-P. Lecomte, J.-C. Chottard, J.-F. Bartoli, Inorg. Chem. **1981**, *20*, **31**19 – **31**21.
- <sup>[10]</sup> W. Beck, W. Knauer, C. Robl, Angew. Chem. 1990, 102, 331-333; Angew. Chem. Int. Ed. Engl. 1990, 29, 318-320.
- <sup>[11]</sup> M. F. Lappert, A. J. Oliver, J. Chem. Soc., Chem. Commun. 1972, 274 - 275
- <sup>[12]</sup> E. Kühle, B. Anders, G. Zumach, Angew. Chem. **1967**, 79, 663–680; Angew. Chem. Int. Ed. Engl. **1967**, 6, 649; E. Kühle, B. Anders. E. Klauke, H. Tarnow. G. Zumach, ibid. 1969, 81, 18-32 bzw. **1969**, *8*, 20.
- <sup>[13]</sup> W. P. Fehlhammer, A. Mayr. B. Olgemöller, Angew. Chem. 1975, 87, 290-291; Angew. Chem. Int. Ed. Engl. 1975, 14, 369-370.
- <sup>[14]</sup> W. P. Fehlhammer, A. Schröder, F. Schöder, J. Fuchs, A. Völkl, B. Boyadjiev, S. Schrölkamp, J. Organomet. Chem. 1991, 411, 405 - 417
- <sup>[15]</sup> T. Carofiglio, C. Floriani, A. Chiesi-Villa, C. Guastini, Inorg. Chem. 1989, 28, 4417-4419.
- <sup>[16]</sup> W. P. Fehlhammer, A. Mayr, G. Christian, Angew. Chem. **1978**, 90, 920-921; Angew. Chem. Int. Ed. Engl. **1978**, 17, 866-867.
- <sup>[17]</sup> W. P. Fehlhammer, H. Stolzenberg in Comprehensive Organometallic Chemistry (Hrsg.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon Press, Oxford, 1982, Bd.4, S. 523.
- [18] Gmelin Handbuch der Anorganischen Chemie, Organoiron Com-pounds, C4, 8. Aufl., 1981, S. 148 f.
- CAS-Registry-Nummern

**1a**: 12149-07-4 / **1b**: 139758-97-7 / **1c**: 139758-98-8 / **1d**: 139759-00-5 / cis-**1e**: 139759-01-6 / trans-**1e**: 139894-25-0 / **1f**: 139759-03-8 / 1g: 139759-08-3 / 2c: 139758-99-9 / 2e: 139759-02-7 / 3a: 15999-51-6 / 3b: 139758-95-5 / 3c: 139758-96-6 / 4a: 139759-09-4 / 4b: 139869-55-9 / 4c: 139759-04-9 / 5: 139759-05-9 / 6: 139759-

- <sup>[19]</sup> R. B. King, M. B. Bisnette, J. Organomet. Chem. 1964, 2, 15-37. <sup>[20]</sup> D. Lentz, J. Fluorine Chem. 1984, 24, 523-530, und dort zitierte
- Literatur. <sup>[21]</sup> D. Lentz, B. Pötter, R. Marschall, I. Brüdgam, J. Fuchs, Chem.
- Ber. 1990, 123, 257-260, und dort zitierte Literatur. <sup>[22]</sup> D. Lentz, K. Graske, D. Preugschat, Chem. Ber. 1988, 121,
- 1445 1447. <sup>[23]</sup> M. L. Bruce, F. G. A. Stone, Angew. Chem. 1968, 80, 835-841;
- Angew. Chem. Int. Ed. Engl. 1968, 7, 747. <sup>[24]</sup> W. P. Fehlhammer, A. Mayr, W. Kehr, J. Organomet. Chem.
- **1980**, *197*, 327 334.
- [25] L. Busetto, L. Carlucci, V. Zanotti, V. G. Albano, D. Braga, J. Chem. Soc., Dalton Trans. 1990, 243-250.
- <sup>[26]</sup> J. E. Ellis, E. A. Flom, J. Organomet. Chem. 1975, 99, 263-268. [27] N. N. Greenwood, K. A. Hooton, J. Chem. Soc. A 1966, 751 - 754.
- <sup>[28]</sup> T. I. Savchenko, I. V. Kolesnikova, T. D. Petrova, V. E. Platonov, J. Fluorine Chem. 1983, 22, 439-458.
- <sup>[29]</sup> Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wis-senschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55991, der Autorennamen und des Zeitschriftenzitats an-
- gefordert werden. <sup>[30]</sup> S. R. Hall, J. M. Stuart XTAL3.0 Reference Manual, Universities of Western Australia and Maryland, 1990.

[479/91]

06-1 / 7: 139894-26-1 / 7 · x CH<sub>2</sub>Cl<sub>2</sub>: 139973-18-5 / 8: 139759-07-2 /  $\begin{array}{l} PhN = CCl_2: \ 622-44-6 \ / \ 4-Cl-2-CF_3C_6H_3N = CCl_2: \ 654-74-0 \ / \ 2,4-\\ Cl_2C_6H_3N = CCl_2: \ 2666-70-8 \ / \ 3,4-Cl_2C_6H_3N = CCl_2: \ 16001-40-4 \ / \\ C_6H_{11}O_2CN = CCl_2: \ 139758-94-4 \ / \ CF_3N = CBr_2: \ 7739-47-1 \ / \\ \end{array}$  $C_6F_5N = CCl_2$ : 64317-34-6 / [FeCp(CO)<sub>2</sub>]<sub>2</sub>: 12154-95-9 / NaFp: 12152-20-4